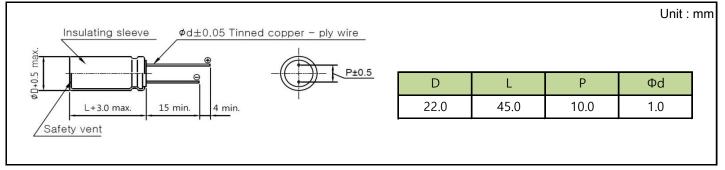

Purixel(ELECTRIC DOUBLE LAYER CAPACITORS)

PVC


Radial Type Standard Series

- \cdot Endurance : 3.0V 65°C 1000 hours
- \cdot Small size, high capacitance and low resistance
- \cdot Longer cycle life than other secondary batteries

Item	Characteristics				
Operating Temperature Range	-40 ~ +65°C				
Rated Voltage	3.0 VDC				
Capacitance Tolerance	-10% ~ +20%				
Temperature Characteristics	Capacitance ch Internal resistar	-			
	Internal resistar				
Endurance	Duration	1000 hours			
	Capacitance ch	ge Within ≤30% of initia	al value		
	Internal resistar	Within ≤100% of ini	ial specified value		
Shelf Life	After 1000 hours no load test same as endurance				
Life Time at RT ⁽¹⁾	10 years	(1) ΔC ≤30% of initial value and ESR ≤100% of initial specified value.			
Cycle Life(25°C) ⁽¹⁾⁽²⁾	500,000 cycles	(2) Cycle : between rated voltage and half rated voltage under constant current at 25 °C			

DIMENSIONS

SPECIFICATIONS

Rated Voltage	Cap.	ESR, 1kHz	ESR, DC	LC(72hr)	Specific Energy	Specific Power	Max. Peak Current	Weight	Volume	PART No.
V	F	mΩ	mΩ	mA	Wh/kg	kW/kg	А	g	mL	
3.0	100	8	13	0.300	5.95	8.24	65.22	21.00	17.10	PVC03R0SN10722045

1. Capacitance and Equivalent Series Resistance (ESR) measured according to IEC62391-1 at +25°C,

with current in milliamps (mA) = 10*C

2. Leakage Current at 25°C after 72 hours charge and hold

3. Specific Energy (Wh/kg) = $(\frac{1}{2}*C*V^2/3600)$ /weight

4. Specific Power (kW/kg) = $(V^2/4*ESR)/weight$

5. Max Peak Current in Amps (A), 1 second discharge from rated voltage to half rated voltage = $(\frac{1}{2}*C*V)/(1+ESR*C)$